
US NDC Modernization
SAND-xxxx
Unclassified Unlimited Release
December 2014

US NDC Modernization Iteration E2
Prototyping Report: OSD & PC Software
Infrastructure

Version 1.1

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20571R

SAND-xxxx Page 2 of 60

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

DECEMBER 2014

SAND-xxxx Page 3 of 60

SAND-xxxx
December	2014

US NDC Modernization Iteration E2 Prototyping Report:

OSD & PC Software Infrastructure

Ryan	Prescott
Ailsa	Chiu

Bernard	L.	Marger

Version	1.11
Sandia	National	Laboratories

P.O.	Box	5800
Albuquerque,	New	Mexico		87185

ABSTRACT

During	the	second	iteration	of	the	US	NDC	Modernization	Elaboration	phase	
(E2),	the	SNL	US	NDC	Modernization	project	team	completed	follow-on	COTS	
surveys &	exploratory	prototyping	related	to	the	Object	Storage	&	Distribution	
(OSD)	mechanism,	and	the	processing control software	infrastructure.	This	
report	summarizes	the	E2 prototyping	work.

DECEMBER 2014

SAND-xxxx Page 4 of 60

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 9/19/2014 US	NDC	Modernization	Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

DECEMBER 2014

SAND-xxxx Page 5 of 60

TABLE OF CONTENTS

US NDC Modernization Iteration E2 Prototyping Report: OSD & PC Software
Infrastructure .. 3

Abstract ... 3

Revisions ... 4

Table of Contents .. 5

1. Overview ... 8

2. Focus Areas ... 8

2.1. OSD...8

2.2. Processing Control ..9

3. OSD Prototyping ... 9

3.1. E1 Background ..9

3.2. E2 Prototyping ..10

3.2.1. Hibernate ORM..10

3.2.2. Python Data Access..11

3.2.3. Messaging Software...12

3.2.3.1. OSD & Processing Control Messaging ..12

3.2.3.1.1. OSD Data Distribution ...12

3.2.3.1.2. Processing Control Messaging...14

3.2.3.2. Messaging Framework Survey ...15

3.2.3.2.1. ActiveMQ..15

3.2.3.2.2. Apollo ...16

3.2.3.2.3. QPid..17

3.2.3.2.4. RabbitMQ ...17

3.2.3.2.5. ZeroMQ (also øMQ or zmq) ..18

3.2.3.2.6. RTI DDS...19

DECEMBER 2014

SAND-xxxx Page 6 of 60

3.2.3.3. Summary Comparison ...20

3.2.4. Data Caching & Data Grids ...21

3.2.4.1. OSD Data Distribution ...21

3.2.4.2. Survey of Solutions..22

3.2.4.2.1. JCS ..23

3.2.4.2.2. Memcached..24

3.2.4.2.3. EhCache/Big Memory ...25

3.2.4.2.4. Infinispan ..26

3.2.4.2.5. Redis...28

3.2.4.2.6. HazelCast ..29

3.2.5. Summary ...30

4. Processing Control Prototyping .. 31

4.1. E1 Background ..31

4.2. E2 Prototyping ..31

4.2.1. Messaging Software...31

4.2.2. Batch Processing Frameworks..31

5. Path Forward... 34

5.1. OSD...34

5.2. Processing Control ..35

6. Works Cited... 36

Appendix A. OSD Overview... 39

A.1. OSD Stored Data Access ..40

A.2. OSD Data Distribution ...40

Appendix B. Messaging Solution Space Summary .. 41

Appendix C. Messaging Overview... 43

C.1. Concepts ...43

DECEMBER 2014

SAND-xxxx Page 7 of 60

C.1.1. Message Oriented Middleware..43

C.1.2. Loose Coupling ..43

C.1.3. Resilience ..44

C.1.4. Messaging Patterns ...45

C.1.5. Transactions ..47

C.1.6. Security ...47

C.1.7. Cross-Language Support ..47

C.2. Relevant Standards ...48

C.2.1. AMQP..48

C.2.2. STOMP ..48

C.2.3. JMS..49

C.2.4. DDS ...49

Appendix D. Caching Solution Space Summary .. 50

Appendix E. Overview of Distributed Caching Architectures.............................. 52

E.1. Concepts ...52

E.1.1. Data Cache ..52

E.1.2. Distributed Caching ...54

E.2. Relevant Standards ...58

E.2.1. JSR 107 ..58

E.2.2. JSR 347 ..58

E.3. Use Cases..59

DECEMBER 2014

Page 8 of 60

1. OVERVIEW

The	US	NDC	Modernization	project	statement	of	work	identifies the	definition	of	
a	modernized	US	NDC	system	architecture as	a	key project deliverable.	As	part	of	
the	architecture	definition activity,	the	Sandia	National	Laboratories	(SNL)	
project	team has	established	an	ongoing,	software	prototyping	effort	to	support	
architecture	trades	and	analyses,	as	well	as	selection	of	core	software	
technologies.

During the	second iteration of	the	Elaboration	phase (E2),	spanning	Q3	– Q4
FY2014, the	prototyping	team	developed	follow-on COTS	surveys and	
exploratory	prototypes	related	to	the Object	Storage	&	Distribution	(OSD)	
mechanism	and	processing	control software	infrastructure.	 This	report	
summarizes	E2 work and	discusses	the	path	forward.	

2. FOCUS AREAS

Prototyping	work	to	date	has	focused	on	three	areas	of	the	system,	including	the	
OSD	mechanism,	processing	control	software	infrastructure,	and	user	interface	
framework (UIF). This	report	addresses	only	the	OSD	and	processing	control-
related	activities.	E2	user	interface	prototyping	work	is	documented	in	a	
separate	report	[1].

2.1. OSD

The	OSD	mechanism1		provides	application	programming	interfaces	(APIs)	for	
access	to	data	stored	in	the	system database	as	well	as	distribution	of	data	
among	processing	components.	Figure 6 in	Appendix	A illustrates	the	
components	of	the	OSD.	The	following	goals	and	constraints	have	been	identified	
for	this	mechanism:

 Minimize	dependencies	between	the	system application/research	tools and	
underlying	data	storage	solutions.

 Decouple	the	application	data	model	from	the	physical	data	model	(e.g.	DB	
schema).

 Provide	a	query	language	that	is	independent	of	the	underlying	data	storage	
solution.

																																																												
1 As	defined	in	the	US	NDC	System	Architecture	Document	(SAD),	a	mechanism	represents	a	basic	service	
required	by	many	subsystems	across	the	system.	Examples	include	the	Processing	Sequence	Controller,	and	
Object	Storage	&	Distribution.

DECEMBER 2014

Page 9 of 60

 Provide	optimizations	as	needed	to	support	system	performance	
requirements	– e.g.	in-memory	caching.

 Prefer	Open	Source	Software	(OSS)	and	other	Commercial	Off-The-Shelf	
(COTS)	solutions	to	custom	software	development	where	available.

 Prefer	solutions	based	on	open	standards.

2.2. Processing Control

The	processing	control	software infrastructure2 provides for	the	definition,	
configuration,	execution	and	control	of	system processing	components,	
supporting	both	automated	and	interactive	analysis	processing.	The	following	
design	goals	and	constraints	have	been	identified	for	the	processing	control	
software.

 Provide	a	fault-tolerant,	scalable	processing	model
 Provide	or	support	a	means for	defining	and	configuring	processing	

sequences
 Provide	an	interface	abstraction	to	facilitate	integration	of	new	processing	

algorithm	implementations
 Provide	a	messaging	framework	for	communication	of	data	and	processing	

control	information	among	processing	components
 Support	processing	components	implemented	in	the	languages to	be defined	

for	the	modernized	system
 Prefer	Open	Source	Software	(OSS)	and	other	Commercial	Off-The-Shelf	

(COTS)	solutions	to	custom	software	development	where	available.
 Prefer	solutions	based	on	open	standards.

3. OSD PROTOTYPING

3.1. E1 Background

The E2 OSD	prototyping	effort	represents	a	progression	of	the activities	
completed	in	E1.	A	brief	summary	of	the	E1 OSD	work	is	provided below	for
context.

E1	OSD prototyping	focused	on	evaluation	of	COTS	object-relational	mapping	
(ORM) software	for	use	in	developing	data	access	APIs	for	the	system’s data	
storage	solution.	Exploratory	prototypes	were	developed	for	two	of	the	ORM	
solutions	surveyed	– Hibernate	(Java)	and	ODB	(C++). Ultimately	Hibernate	was	

																																																												
2 The	term	software	infrastructure	is	a	more	general	term	for	a	collection	of	supporting	services	that	may	
include	one	or	more	mechanisms.

DECEMBER 2014

Page 10 of 60

selected for	further	evaluation in	E2	based	on	a project	decision	designating	Java	
as	the	primary	application	development language	for	the	modernized	system.

3.2. E2 Prototyping

The	following	activities	were	completed	in	E2:

1. Follow-on	prototyping	of	the	Hibernate	ORM	supporting	OSD	data	access
2. Evaluation	of	middleware	for	Python	access	to	Java	ORM	APIs	supporting	

OSD	data	access	from	external	scripting	environments
3. Survey	of	messaging	technologies	supporting	OSD	data	distribution,	as	well	

as	processing	control	software	infrastructure
4. Survey	of	data	grid	solutions	for	OSD	data	distribution

The	following	sections	describe	each	of	these	activities	in	further	detail.

3.2.1. Hibernate ORM

As	indicated	in	Appendix	A,	an	ORM	solution	will	be	used	to	implement	Data	
Access	Objects	(DAOs), providing	access	to	stored	data	both	within	the	system,	
and	from	external	(e.g.	research)	environments.	In	E2,	the	team	developed	an	
expanded	Hibernate-based	ORM	prototype	demonstrating	storage,	modification	
and	query-based	retrieval	of	event	hypothesis,	signal	detection	and	waveform	
entity	objects	from	an	underlying	Oracle	DBMS	instance.	This	work	was	
completed	as	part	of	a	summer	student	intern	project.

The	E2	work	demonstrated	Hibernate’s automated conversion	between	
application	entity	objects	and	table	data	stored	in	the underlying	database.	The	
prototype	demonstrated	both	of	Hibernate’s	object-to-relational	mapping	
approaches:	XML	specifications,	and	in-code	annotations.	Both	were	found	to	be	
straightforward	to	implement,	and	significantly	reduced	the	effort	required	to	
develop	persistence	APIs	for	the	selected	entities	(event	hypothesis,	signal	
detection	&	waveform).	It	should	be	noted	that	the	in-code	annotation	mapping	
approach	is	considered	to	be	the	best	practice, given	that	it	results	in	a	simpler,	
less	verbose	interface relative	to	XML-based	mappings.

A	remaining	concern	for	Hibernate (and	COTS	ORM	solutions	in	general)	relates	
to access	performance.	It	is	not	yet	clear	whether	Hibernate can	meet	the	
system’s read/write	performance	requirements	for	worst-case	scenarios	under	
load.	At	issue	is	the	fact	that	Hibernate	automatically	generates	SQL	statements	
for	CRUD	operations,	which	may	not	be	optimized	for	performance	given	the	
system’s database	schema.	For	these	cases,	Hibernate	allows	the	generated	SQL	
to	be	overridden	with	user-specified	statements.	In	E3,	the	team	will	assess	
Hibernate	performance	against	stressing	queries/data	sets. In	the	event	that	

DECEMBER 2014

Page 11 of 60

Hibernate	cannot	meet	performance	requirements, alternate	approaches	(e.g.	
custom	ORM	built	on	JDBC)	will be	pursued.

3.2.2. Python Data Access

Access	to	stored	system data	via	the	OSD	from	external	scripting	environments	
will	be	required	in	the	modernized	system.	Python	has	been	identified	as	a	
candidate scripting	language.	In	order	to	investigate	Python-based	OSD	access,	a	
summer	intern	project	evaluated	Python/Java	interoperability	middleware	
options.	Two	types	of	solution	were	considered as	part	of	the	project:

1. Jython,	formerly	JPython	is	an	alternate	implementation	of	the	Python	
language	specification	written	in Java	(the	Python	reference	
implementation	is	written	in	C).	Jython	programs	are	compiled	(statically	
or	dynamically)	to	Java	bytecode,	which	runs	on	the	Java	Virtual	Machine	
(JVM).	Jython	is	therefore	able	to	provide	direct	access	to	Java	classes	and	
APIs.	The	primary	disadvantage	of	Jython	is	that	it	is	an	alternative	
Python	implementation.	As	such,	it	less	widely	used,	and not	as	well	
supported	as	the	reference	implementation.

2. JPype	and	Py4J	are	middleware	solutions	providing	access	to	Java	classes	
from	within	Python	programs	using	Java	Native	Interfaces	(JNI).		Both	
solutions	provide	Java	type	mappings	(including	primitives,	strings,	
collections,	user-defined	types	&	classes,	etc.)	as	well	as	support	for	Java	
language	features	such	as	exceptions,	threading	&	synchronization.	Py4J	
is	under	active	development,	with	the	latest	version	(0.8.2)	released	in	
July	of	this	year.	JPype’s	current	development	status	is	less	clear;	the	most	
recent	version	was	released	in	2011.

The	primary	advantage	of	these	solutions	is	that	they	provide	robust	Java	
interoperability	with	the	reference	Python	implementation.	The	primary	
disadvantage	is	the	potential	for	additional	latency	introduced	by	the	
addition	of	JNI	interfaces.	It	is	unclear	whether	latency	is	truly	an	issue	
however.	The	providers	of	JPype	for	example,	argue	that	Java	software	
accessed	via	JPype	is	likely	to	be	faster	than	an	equivalent	Python	
program	given	JVM	optimizations	for	code	execution	speed	relative	to	
Python.	[2]

Prototypes	were	developed	using	both	approaches	demonstrating	basic	access	
to	Java	entity	classes,	including	event	hypothesis,	signal	detection	&	waveform	
classes.	Although	both	approaches	were	found	to	be	functionally	similar,	the	
middleware	approach	(JPype,	Py4J)	was	determined	to	be	the	better	solution	
because	it	supports	the reference	Python	implementation.	Further	prototyping	
of	this	solution	will	be	completed	as	needed	in	future	iterations.

DECEMBER 2014

Page 12 of 60

3.2.3. Messaging Software

Inter-process	communication	(IPC)	is	a	key	underlying	capability	required	in	
distributed	computing	architectures	for	the	exchange	of	data,	control,	and	status	
information	between	independent	processing	residing	on	one	or	more	hosts.	

Although	there	are	numerous	low-level	IPC	technologies	available	– files,	
memory-mapped	files,	shared	memory,	signals,	semaphores,	pipes,	named	pipes,	
etc.	– the	survey	focused	on	message-based	solutions	for	the	following	reasons.	

 They	provide	a	generalized	communication	infrastructure	supporting	
information	exchange	between	processes	distributed	over	a	network.	

 They	provide	higher-level	abstractions,	insulating	applications	from	
details	of	the	underlying	communication	stack.

 They	provide	a	flexible	set	of	communication	patterns	supporting	a	wide	
array	of	application	architectures.

 They	have	become	the	dominant	technology	for	modern	distributed	
systems.

Appendix	C provides	a	brief	overview	of	relevant	concepts,	standards	and	use	
cases	related	to	messaging	software.

3.2.3.1. OSD & Processing Control Messaging

Messaging	software	COTS	can	be	applied	to	support	both	the	OSD	data	
distribution	requirements, as	well	as	those	of	the	processing	control	software	
infrastructure.

3.2.3.1.1. OSD Data Distribution

As	currently	defined	in	the	US	NDC	architecture,	the	OSD	mechanism	provides	
publish/subscribe-based	distribution	of	data	across	processes,	including	both	
persistent	data	stored	in	the	database,	and	transient	data	maintained	in	memory.	
Messaging	frameworks	provide	a	robust,	widely-adopted	solution	space	that	can	
be	used	to	support	this	capability.	In	order	to	address	the	full	set	of	use	cases,	
multiple	distribution	design	patterns	will	likely	be	needed.	Examples	include	
direct	transmission	of	application	data	between	processes	(see	Figure	1),	and	
indirect	distribution	of	data	via	the	database	or	distributed	caching	middleware	
with	message-based	notification	of	subscribers	(see	Figure	2).

DECEMBER 2014

Page 13 of 60

Figure 1. Example Messaging for Data Distribution

Application	components	publish	data	directly	to	other	components	who	subscribe	
via	publish/subscribe	topics.	The	OSD	provides	data	serialization	and	messaging	
support.

OSD

Control
Class

Control Class

Messaging
Framework

Pub/Sub TopicsControl Class

Send Data
(Publish)

Receive
Subscribed-for
Data

DBMS/Cache

DAO

ORM

DECEMBER 2014

Page 14 of 60

Figure 2. Example Notification Messaging for Data Distribution

Application	components	publish	data	indirectly	to	other	components by	storing	
data	in	the	database	or	middleware	cache	via	Data	Access	Objects	(DAOs)	and	
publishing	notification	messages	to	subscribers.	Other	components	subscribe	for	
data	through	messaging	publish/subscribe	topics.	Upon	receipt	of	notification	
messages,	subscribers	retrieve	the	indicated	data	from	the	database/cache.

3.2.3.1.2. Processing Control Messaging

Messaging	frameworks	can	be	used	as	part	of	a	processing	control	solution	to	
communicate	tasking	and	other	control	information	between	processing	
components.	The	example	in	Figure	3 shows	messaging	between	the	Process	
Sequence	Control mechanism	and	control	classes	in	order	to	distribute	
processing	sequence	tasks	and	collect	processing	status.

OSD

Control
Class

Control Class

DBMS/Cache

Messaging
Framework

Pub/Sub TopicsControl Class

DAO

ORM

Store
Published
Data

Notify
Subscribers

Retrieve
Subscribed-for
Data

DECEMBER 2014

Page 15 of 60

Figure 3. Example Messaging for Task Distribution

3.2.3.2. Messaging Framework Survey

Several	popular,	open-source	frameworks	were	surveyed	as	part	of	the	E2	work,	
including	Apache	ActiveMQ,	Apache	Apollo,	Apache	QPid,	RabbitMQ,	ZeroMQ,	
and	RTI	DDS.	The	following	sections	provide	an	overview	of	each	framework,	as	
well	as	high-level	comparisons	&	conclusions.	Table	1in	Appendix	B summarizes	
the	survey	findings.

3.2.3.2.1. ActiveMQ

ActiveMQ is	a	highly	flexible,	open-source,	brokered	messaging	solution	
providing	broad	support	across	a	number	of	languages,	standards	and	transport	
protocols.	It	is	a	top-level	project	of	the	Apache	Software	foundation,	and	has	
been	under	active	development	since	2003.	It	is	released	under	the	Apache	
License	2.0.	Commercial	support	is	available	from	a	number	of	third-party	
vendors.	[3]

Although	ActiveMQ	uses	its	own	OpenWire3 protocol	by	default,	it	also	supports	
AMQP,	STOMP,	XMPP,	REST	&	WS	Notification,	among	others.	ActiveMQ	
supports	various	transport	protocols,	including	in-memory,	TCP,	SSL,	NIO,	UDP,	
multicast,	JGroups	and	JXTA.	Clients	are	available	in	a	variety	of	languages,	
including	Java,	C,	C++,	C#,	Python,	Ruby,	Perl	&	PHP. [4] It	is	fully	compliant	with	
the	JMS	1.1	standard,	and	integrates	with	Spring	as	the	JMS	provider	via	the	
JMSTemplate.	ActiveMQ	does	not	provide	cross-language	data	serialization;	this	
is	the	responsibility	of	the	client	application.

ActiveMQ	provides	at-least-once	processing	guarantees	using	a	combination	of	
message	acknowledgment,	message	queue	persistence,	and	broker	clustering	
(see	Figure	8 in Appendix	C).		

																																																												
3 OpenWire	is	a	cross-language,	binary	wire	protocol	developed	as	part	of	the	ActiveMQ	project.

Processing
Sequence

Control

Control ClassTask Queue

Response Queue

Control Class

Plugin

Messaging Middleware

DECEMBER 2014

Page 16 of 60

ActiveMQ	is	used	for	messaging	in	several	Enterprise	Service	Bus	(ESB)	
implementations	and	other	Service	Oriented	Architecture	(SOA)	frameworks,	
including	MuleESB,	Apache	ServiceMix,	Apache	CXF,	&	Apache	Camel.

ActiveMQ	provides	a	number	of	additional	features,	including	the	following.

 Advanced	features	to	support	scalability	and	load	balancing.4

 Routing	features	such	as	content-based	message filtering	&	message	
prioritization

 Transaction	support

 Security	features,	including	authorization	using	a	custom	access	controls	
mechanism,	authentication	using	the	Java	Authentication	and	
Authorization	(JAAS)	framework,	and	encryption	&	certificate	
management	using	SSL

 JDBC-based	RDBMS	integration	for	message	persistence

 Broker	management	and	administration	support	using	the	Java	
Management	Extensions	(JMX)

3.2.3.2.2. Apollo

Apollo	is	a	subproject	of	Apache	ActiveMQ	that	seeks	to	improve	upon	ActiveMQ	
broker	performance	&	scalability,	employing	an	alternate	threading	and	message	
dispatching	architecture	to	eliminate	synchronization	inherent	in	parts	of	the	
ActiveMQ	broker.	The	intent	is	to	better	leverage	high	core	counts	on	modern	
processors. [5] Apollo	was	first	released	in	early	2012.	It	currently	supports	only	
a	subset	of	the	features	available	in	ActiveMQ;	STOMP	is	the	only	protocol	
currently	available.	Apollo	is	released	under	the	Apache	License	2.0.

The	Apollo	subproject	describes	itself	as	the	next	generation	of	ActiveMQ	
messaging,	providing	throughput	and	scalability	improvements	targeting	future	
enterprise	messaging	needs.		The	Apollo	project	released	benchmark	results	in	
2011	showing	favorable	performance	relative	to	ActiveMQ,	RabbitMQ,	&	
HornetQ	for	the	scenarios	addressed [6].

																																																												
4 ActiveMQ	connection	pooling,	Message	Groups,	Virtual	Topics,	Wildcard	Topics and	Composite	Destinations
provide	a great	deal	of	flexibility	in	designing	high-performance	messaging	systems	with	built-in	load	
balancing	&	failover. [4] Optional	message	persistence	is	provided	through	a	replicated	LeveDB	store.

DECEMBER 2014

Page 17 of 60

3.2.3.2.3. QPid

Apache	QPid	is	an	open-source	messaging	solution	implementing	the	AMQP	
standard.	It	is	a	top-level	apache	project	under	active	development since	2005.		
It	is	released	under	the	Apache	License	2.0.	

The	Qpid	project	includes	broker	implementations	in	Java	&	C++,	with	client	
APIs	available	in	a	variety	of	languages	including	C,	C++,	Java,	Python,	Perl,	Ruby,	
PHP	&	C#.	QPid	also	provides	a	JMS	1.1	compliant	client,	as	well	as	a	Java	
Connecter	Architecture	(JCA)	resource	adapter	for	Java	EE	applications.	QPid	
does	not	provide	cross-language	data	serialization;	this	is	the	responsibility	of	
the	client	application.

QPid	provides	at-least-once	processing	guarantees	using	a	combination	of	
message	acknowledgment,	message	queue	persistence,	and	broker	clustering	
(see	Figure	8 in	Appendix	C).		QPid	provides	a	number	of	additional	features,	
including	the	following.

 Message	transaction	support

 Routing	features	such	as	content-based	message	filtering	&	message	
prioritization

 Security	features,	including	authorization	via	ACLs,	authentication	using	
the	Simple	Authentication	&	Security	Layer	(SASL)	framework,	and	
encryption	&	certificate	management	using	SSL

 RDBMS	integration	for	message	persistence	in	the	broker

 Broker	management	and	administration	support	using	the	Java	
Management	Extensions	(JMX)	for	the	Java	broker	and	the	QPid	
Management	Framework	(QMF)	for	the	C++	broker

3.2.3.2.4. RabbitMQ

RabbitMQ	is	a	very	popular5 open-source	message	oriented	middleware	solution	
that	implements	the	AMQP	standard.	It	has	been	under	active	development	since	

																																																												
5 Interest	in	RabbitMQ	as	measured	using	Google	Trends	search	term	frequency	is	the	highest	among	the	
messaging	solutions	surveyed,	having	recently	surpassed	ActiveMQ	in	2013.	See	Figure	7 in	6.Appendix	D for	
the	Google	Trends	data.

DECEMBER 2014

Page 18 of 60

2008,	and	is	currently	managed	by	Pivotal	Software6,	which	provides	
commercial	support.	RabbitMQ	is	released	under	the	Mozilla	Public	License.

RabbitMQ	includes	clients	for	Java,	C#	and	Erlang.	Many	other	clients,	including	
C/C++,	Perl,	Python,	PHP	are	available	from	third-party	projects.	The	Spring	
framework	provides	an	integration	with	RabbitMQ	via	Spring	AMQP.	A	
command-line	interface	is	also	available.	RabbitMQ	does	not	provide	cross-
language	data	serialization;	this	is	the	responsibility	of	the	client	application.

RabbitMQ	provides	at-least-once	processing	guarantees	using	a	combination	of	
message	acknowledgment,	message	queue	persistence,	and	broker	clustering	
(see	Figure	8 in Appendix	C).		A	number	of	additional	features	are	available,	
including	the	following:

 Transaction	support

 Security	features,	including	authorization	using	a	custom	access	controls	
mechanism,	authentication	using	the	Simple	Authentication	&	Security	
Layer	(SASL)	framework,	and	encryption	&	certificate	management	using	
SSL

 Custom	message	persistence

 Routing	features	such	as	content-based	message	filtering	&	message	
prioritization

3.2.3.2.5. ZeroMQ (also øMQ or zmq)

ZeroMQ	is	a	high-performance	messaging	library	designed	to	support	scalable	
applications	(either	concurrent	or	distributed).	It	is	free,	open-source	software	
released	under	the	GNU	Lesser	Public	License,	and	developed	by	iMatix,	which	
provides	commercial	support.	Stated	design	goals	for	ZeroMQ	include	simplicity,	
performance	and	scalability.	Unlike	most	other	solutions	surveyed,	it	employs	a	
broker-less	architecture.7 [7]

ZeroMQ	provides	a	several	messaging	patterns	including	exclusive	pair	(single	
pair	point-to-point),	publish/subscribe,	request/response	and	push/pull	
(parallel	task	distribution	&	collection).	It	supports	a	number	of	network	
transports	(TCP,	TIPC,	SCTP,	PGM,	etc.),	as	well	as	an	in-process	transport	
supporting	multi-threading	via	the	ZeroMQ	messaging	model.

																																																												
6 Pivotal	Software,	Inc.	is	a	software	and	services	company	founded	in	2013	and	currently	based	in	San	
Fancisco,	CA.
7 A	broker-less	architecture	optimizes	for	performance	at	the	expense	of	anonymity	between	sender	and	
receiver	- the	network	address	of	either	the	sender	or	receiver	must	be	statically	known	by	the	other.

DECEMBER 2014

Page 19 of 60

Messaging	clients	are	provided	in	C,	Python,	Java,	.NET,	Ruby,	PHP,	Perl,	and	
Erlang.	ZeroMQ	does	not	provide	cross-language	data	serialization;	this	is	the	
responsibility	of	the	client	application.	Authentication	and	encryption	are	
provided	via	the	CurveZMQ	custom	protocol.

3.2.3.2.6. RTI DDS

RTI	DDS	is	a	robust,	scalable	real-time	messaging	framework	implementing	the	
DDS	standard.	It	is	developed	by	Real-Time	Innovations	(RTI),	which	provides	
both	open-source	and	commercial	versions.	The	open-source	version	is	released	
under	a	limited	open-source	license	developed	by	RTI	called	the	Infrastructure	
Community	License	(ICL).	The	ICL	allows	distribution	of	the	core	RTI	DDS	
product	source	code	within	an	Infrastructure	Community	(IC),	which	RTI	defines	
to	be	an	organization	with	the	goal	of	establishing	common	software	
infrastructure	across	projects,	systems,	etc.	[8]

RTI	DDS	is	designed	for	low-latency,	high-throughput	and	deterministic	quality-
of-service	under	load.	Current	marketing	for	RTI	DDS	is	targeted	to	the	Internet	
of	Things	(IoT)	and	other	real-time	architecture	domains.	As	with	ZeroMQ,	RTI	
DDS	uses	a	broker-less	peer-to-peer	connection	model	in	order	to	minimize	
latency.		It	supports	multiple	underlying	transports,	including	for	example,	TCP,	
UDP,	multicast	&	shared	memory.

As	defined	in	the	DDS	standard,	RTI	DDS	provides	fine-grained	control	over	
messaging	quality-of-service,	addressing	both	latency	and	message	delivery	
guarantees.	Optional	message	persistence	supports	asynchronous	transmission	
to	clients	even	if the	sender	is	no	longer	available.

DDS	and	JMS	messaging	APIs	are	provided	as	part	of	the	core	library.	Integration	
services	are	available	in	the	commercial	edition	for	web	integration	(via	REST	&	
SOAP),	and	relational	database	management	systems.	Clients are	provided	
supporting	C,	C++,	Java	&	C#.	RTI	provides	for	serialization	of	message	data	
using	code	generation	based	on	the	DDS	interface	description	language	(IDL).	
RTI	DDS	provides	a	number	of	additional	features,	including	the	following:

 Security	features,	including	access	controls,	authentication,	and	
encryption	via	OpenSSL	and	TLS		

 Facilities	for	recording	and	replaying	message	traffic	(commercial	
edition)

 Sophisticated	monitoring,	modeling	and	administration	tools	to	support	
configuration,	tuning	& troubleshooting	(commercial	edition)

DECEMBER 2014

Page 20 of 60

RTI	DDS	markets	itself	as	the	most	prevalent	of	the	DDS-based	solutions.	[9] It	
has	a	broad	customer	base	across	a	number	of	industries	including,	for	example,	
healthcare,	defense,	energy,	transportation,	industrial	and	communication.	[10]

3.2.3.3. Summary Comparison

All	of	the	solutions	surveyed	provide	flexible	support	for	various	messaging	
patterns,	as	well	as	scalability,	reliability	and	security	features.	

All	of	the solutions	surveyed	provide	support	for	the	most	common	development	
languages,	including	C,	C++,	Java	&	C#.	Except	for	DDS,	all	solutions	also	support	
Python,	Perl	&	Ruby.

Two	messaging	standards	are	dominant	among	the	solutions	surveyed:

1. AMQP - ActiveMQ,	Apollo,	QPid,	and	RabbitMQ	all	implement	the	
Advanced	Message	Queuing	Protocol	(AMQP)	standard

2. DDS - RTI DDS	implements	the	Data	Distribution	Service	(DDS)	standard

The	DDS	standard	is	specialized	for	low-latency,	high-throughput,	real-time	
systems	where fine-grained	control	over	quality	of	service	policies	is	required.	
Many	of	these	features	are	likely	not	critical	drivers	for	the	system,	and	come	at	
the	expense	of	greater	complexity	compared	with	the	AMQP	solutions.	AMQP	is	a	
more	general-purpose	standard	emphasizing	flexible	messaging	patterns,	
performance,	interoperability,	reliability	and	security.

With	the	exception	of	RTI	DDS,	all	solutions	provide	their	full	features	sets	in	an	
open	source	distribution.	DDS	provides	a	subset	of	its	features	under	a limited	
open-source	license.	Commercial	support	is	available	for	all	of	the	solutions.

There	are	a	number	of	performance	studies	and	comparisons	available	for	the	
solutions	surveyed.	[11] [12] [13] [14] Specific	performance	comparisons	are	
difficult	to	draw	without	targeted	testing	accounting	for	application-specific	
constraints	&	requirements	regarding	scale,	reliability,	message	persistence,	
transactionality,	protocols,	etc.	In	general	the	solutions	surveyed	support	
throughput	ranges	of	several	thousand	to	several	million	messages	per	second,	
depending	on	a	multitude	of	factors	(message	size,	network	&	hardware	specs,	
operating	system,	etc.).	

ZeroMQ	and	DDS	are	generally	considered	to	be	higher	performance	solutions	
than	the	other	(brokered)	solutions	surveyed.	Among	brokered	solutions,	
RabbitMQ	appears	to	perform	particularly	well.	[11] Targeted	performance	
prototyping	has	been	identified	as	a	high-priority	follow-on	activity	for	select	
messaging	solutions	in	E3.

DECEMBER 2014

Page 21 of 60

The	relative	prevalence	of	solutions	is	difficult	to	measure.	Both	DDS	and	AMQP	
standards	have	significant	commercial	backing	and	large	communities.	Internet	
search	term	frequency	analysis	– e.g.	Google	Trends	– provides	one	(coarse)	
measure	of	interest	in	solutions	over	time.	As	depicted	in	Figure	7,	RabbitMQ	
and	ActiveMQ	currently	have	significantly	higher	search	term	occurrence	
relative	to	the	other	solutions.	RabbitMQ	has	the	highest,	having	passed	
ActiveMQ	in	2013,	and	shows	the	most	significant	growth	in	recent	years	among	
the	surveyed	solutions.

In	summary,	AMQP solutions	appear	to	provide	a	better	complexity/feature	set	
trade-off	when	compared	with	DDS	solutions.	Among	the	AMQP	solutions	
surveyed,	RabbitMQ	appears	particularly	compelling,	based	on	prevalence	and	
performance.	E3	prototyping	for	data	distribution	and	processing	control	will	be	
based	on	RabbitMQ.	This	decision	will	be	revisited	based	on	E3	results.	

3.2.4. Data Caching & Data Grids

Access	to	data	is	a	key	concern	within	nearly	any	application.	For	data-intensive	
applications	where	scalability	and	response	time	are	significant	drivers,	timely	
access	to	high-volume	data	is	a	challenging	problem.	A	number	of	solutions	have	
evolved	in	recent	years	to	address	this	problem,	including	data	caching	solutions	
and	data	grids.

These	solutions	are	designed	to	provide	low-latency	access	to	both	temporary	
and	persistent	data	across	distributed	architectures.	They	are	typically	designed	
to	integrate with	multiple	storage	solutions.	

As	described	the	following	sections,	there	is	a	wide	variety	of	open-source	
caching	solutions	that	can	be	leveraged	for	applicable	processing	architectures.
Appendix	E provides	an	overview	of	data	caching	&	data	grid	architectures,	
standards	and	use	cases.

3.2.4.1. OSD Data Distribution

As	currently	defined	in	the	US	NDC	architecture,	the	OSD	mechanism	provides	
publish/subscribe-based	distribution	of	data	across	processes,	including	both	
persistent	data	stored	in	the	database,	and	transient	data	maintained	in	memory.
Depending	on	the	access	performance	of	the	database,	a	data	cache	or	data	grid	
solution	may	be	used	to	provide	lower-latency	access	to	application data,	
particularly	as	the	volume of	data	scales	in	the	future.	Figure	4 illustrates	an	
example	architecture	employing	a	caching/data	grid	solution	to	provide	
horizontally-scalable	application	access	to	system data,	both	persistent	and	
transient.	Although	this	figure	shows	a	separate	messaging	framework	providing	

DECEMBER 2014

Page 22 of 60

notification	of	data	updates,	many	of	the	surveyed	solutions	provide	a	similar	
capability that	could	be	used instead.

Figure 4. Example Caching As Part of OSD Data Distribution

Application	components	publish	data	indirectly	to	other	components by	storing	
data	in	the	cache	via	Data	Access	Objects	(DAOs)	and	publishing	notification	
messages	to	subscribers.	Other	components	subscribe	for	data	through	messaging	
publish/subscribe	topics.	Upon	receipt	of	notification	messages,	subscribers	
retrieve	the	indicated	data	from	the	cache.

3.2.4.2. Survey of Solutions

Several	popular,	open-source	data	grid	solutions	were	surveyed	as	part	of	the	E2	
work,	including	JCS,	memcached,	EhCache,	Infinispan,	Redis	&	Hazelcast.	The	
following	sections	provide	an	overview	of	each framework,	as	well	as	high-level	

OSD

Control Class

Control Class

DBMS

Messaging Framework

Pub/Sub Control Class

DAO

ORM

Cache
Published
Data

Notify
Subscribers

Caching/Data Grid

Retrieve
Subscribed-for
Data

Caches

DECEMBER 2014

Page 23 of 60

comparisons	&	conclusions.	Table	2 in Appendix	D summarizes	the	survey	
findings.

3.2.4.2.1. JCS

The	Java	Caching	System	(JCS)	is	a	general-purpose	open-source	caching	
solution	for	the	Java	platform.	It	is	managed	by	the	Apache	Software	Foundation	
as	part	of	the	Apache	Commons	project,	where it	has	been	under	active	
development	since	its	initial	formal	release	in	2007.	It	is	released	under	the	
Apache	License	2.0.	Although	JCS	is	very	similar	to	the	JSR	107	standard,	by	
design	it	is	not	a	complete	implementation	of	JSR	1078.	JCS	supports	four	modes	
[15],	addressing	both	local	and	distributed	caching	use	cases:

 LRU	Memory	Cache – An	in-memory	cache	embedded	within	the	
application,	providing	fast	access	to	local	data.	The	cache	is	managed	
using	an	LRU	eviction	policy.

 Disk	Cache – An	in-memory	embedded	cache	providing	integration	with	a	
local	backing	store.	Two	types	of	backing	store	are	provided.	

o The	indexed	disk	cache	provides	a	swapping	cache	where	indices	
of	elements	stored	on	disk	are	maintained	in	the	cache.	It	is	
primarily	intended	to	increase	the	available	cache	size	beyond	the	
available	memory	of	the	application.	

o The	JDBC	disk	cache	provides	an	in-memory	cache	backed	by	a	
relational	database.	Oracle,	MySQL	&	HSQL	are	currently	
supported.	Cache	elements	are	serialized	and	written	as	BLOBs	to	
the	underlying	database.

 TCP	Lateral	Cache - A	distributed	caching	model	where	each	application	
maintains	a	local	copy	of	the	cache	and	a	connection	to	every	other	
application	(see	Figure	16).	Cache	writes	are	replicated	to	all	applications	
participating	in	the	distributed	cache.	This	mode	is	primarily	intended	for	
single-writer	topologies,	due	to	the	potential	for	inconsistency	across	
distributed	copies	(see	the	Limitations	section	below).

 RMI	Remote	Cache - A	distributed	caching	model	where	each	application	
maintains	a	connection	to	a	remote	caching	server,	which	propagates	
writes	to	all	of	the	applications.	Multiple	cache	servers	can	be	configured	
into	a	cluster	to	support	fault	tolerance	and	high	availability	(see	Figure	

																																																												
8 The	authors	of	JCS	disagreed	with	some	of	the	design	ideas	specified	in	JSR	107	based	primarily	on	
performance	concerns.

DECEMBER 2014

Page 24 of 60

15).	As	with	the	TCP	Lateral	Caching,	this	mode	does	not	guarantee	
consistency given	multiple	writers.	

By	default,	JCS	uses	Java’s	built-in	serialization	for	cache	entries;	however,	
custom	serializers	can	be	injected	in	order	to	optimize	serialization	
performance.

Limitation	of	JCS	include	the	following:

 It	supports	only	Java	applications.

 Its	distributed	caching	modes	do	not	guarantee	consistency	given	
multiple	writers.	Because	cache	writes	are	queued,	separate	writers	can	
overwrite	one	another’s	changes	in	the	TCP	Lateral	cache	mode.	The	RMI	
remote	cache	mode	makes	this	situation	less	likely,	as	local	cache	copies	
are	invalidated	upon	writes	to	the	remote	cache	server;	however	the	copy	
stored	in	the	remote	server	is	not	guaranteed	to	be	the	last	created.

3.2.4.2.2. Memcached

Memcached	is	an	open-source,	distributed,	in-memory	key-value	store. [16] It	
was	originally	developed	for	LiveJournal	in	2003,	and	is	currently	maintained	by	
Danga	interactive.	It	is	a	widely	used	in	high-profile	applications	such	as	
Youtube,	Reddit,	Facebook	&	Twitter,	and	it	is	available	as	part	of	several	
prominent	cloud	computing	platforms,	including	Amazon	Web	Services	(AWS),	
Microsoft	Azure,	Google	App	Engine,	Heroku. [17] It	is	released	under	the	
revised	BSD	License.

Memcached	employs	a	client-server	model	with	the	distributed	cache	
partitioned	across	a	set	of	servers	based	on	key	hashing	as	depicted	in	Figure	17.	
This	approach	provides	horizontal	scalability	insofar	as	the cache	size	can	be	
increased	through	the	addition	of	partition	servers.	Unlike	Figure	17,	
Memcached	does	not	maintain	a	partial	copy	of	cache	data	in	the	client;	all	data	
access	is	via	the	partition	servers.	Cache	entries	are	evicted	from	the	based	on	
the	LRU	algorithm.	Partition servers	are	not	backed	to	an	underlying	storage	
solution.

Memcached	is	cross-language	compatible,	and	provides	clients	in	many	
languages,	including	C,	C++,	Java,	Python,	Ruby,	Perl	&	C#	among	others.	In	order	
to	provide	this	support,	Memcached	does	not	have	built-in	serialization	for	cache	
entries.	Client	applications	are	responsible	for	data	serialization.

DECEMBER 2014

Page 25 of 60

Memcached	can	be	configured	with	authentication	using	the	Simple	
Authentication	and	Security	Layer	(SASL) for	deployments	on	untrusted	
networks.

The	primary	limitation	of	Memcached	is	that	it	does	not	support	an	underlying	
data	storage	solution.	Applications	are	responsible	for	storage	of	cached	data.	As	
a	result,	Memcached	is	not	fault	tolerant	and	must	be	regarded	as	a	strictly	
transitory	cache.	A	variant	of	Memcached	called	MemcacheDB	was	developed	to	
provide	storage	of	cache	data;	however	it	no	longer	appears	to	be	under	active	
development	(the	last	release	was	in	2008).

3.2.4.2.3. EhCache/Big Memory

EhCache	is	an	open-source,	distributed	in-memory	key-value	store	with	optional	
persistence. [18] It	has	been	under	active	development	since	2003,	and	currently	
is	managed	by	Terracotta,	Inc.	EhCache	refers	to	a	free,	open-source	caching	
solution	released	under	the	Apache	License	2.0;	Terracotta	also	provides	a	pair	
of	commercial	versions	under	the	names	Big	Memory	Go	&	Max.	

The	primary	differences	between	EhCache	and	the	commercial	versions	relate	to	
cache	distribution	and	cross-language	support.	EhCache	supports	standalone	
mode	(single-node	cache)	and	replicated	mode	(a	distributed	based	on	
replication).	The	Big	Memory	Max	cache,	in	contrast,	provides	a	distributed,	
caching	model	combining	clustered	caching	servers	and	local	caches	managed	
based	on	eviction	policies	(e.g.	LRU,	LIRS).	Figure	15 &	Figure	16 illustrate	
notional	replicated	EhCache	and	Big	Memory	Max	caching	models,	respectively.	
EhCache	provides	only	Java-based	APIs,	with	data	serialization	based	on	Java	
serialization.	Big	Memory	Max	provides	additional	clients	in	C++	&	C#,	with	
cross-language	data	serialization	support	based	on	Apache	Thrift.

Cached	data	lifecycle	management	for	both	EhCache	and	Big	Memory	is	based	on	
lifespan	policies	(Time-to-Idle	&	Time-to-Live),	and	Least-Recently-Used	(LRU)	
eviction	policies.	Cache	event	callback	APIs	are	provided	for	client	notification	of	
additions,	updates,	removals,	and	expirations.

Both	EhCache	&	Big	Memory	support	JTA	transactions	&	optional	replication.	
Both	also	support	persistence	of	cached	data	with	two	separate	approaches:

1. Built-in	persistence	to	a	custom	backing	store	– this	feature	appears	
primarily	intended	to	support	durability	across	application	restarts.

2. In	addition,	EhCache	and	Big	Memory	can	be	configured	as	either	a	write-
through	or	write-behind	cache	for	underlying	relational	databases.	In	
particular,	both	can	be	configured	as	level	2	caches	for	Hibernate.

DECEMBER 2014

Page 26 of 60

EhCache	and	Big	Memory	support	cache	searching	based	on	specially-exposed	
attributes	in	either	the	cached	key	or	value.	However,	only	the	Big	Memory	
caches	support	indexing	to	improve	search	performance.

3.2.4.2.4. Infinispan

Infinispan	is	an	open-source	distributed	in-memory	key-value	store	with	
optional	persistence.		[19] [20] It	has	been	under	active	development	since	2009	
as	a	replacement	for	a	previous	product	called	JBoss	Cache,	and	is released	
under	the	Apache	License	2.0.	It	is	maintained	by	the	JBoss	division	of	RedHat,	
which	provides	optional	commercial	support.

Infinispan	supports	several	deployment	models,	including:

o Local – A	non-distributed	cache,	where	data	items	are	stored	in	the	local	
JVM	only.	This	model	is	used	for	basic	caching	applications	where	
distribution	is	not	required	– for	example	a	write-through	cache	
optimizing	access	to	an	underlying	relational	database	(see	Figure	13).

o Replicated – A	multi-node	cache	where	the	entire	cache	is	replicated	to	
every	node.	This	model	leverages	local	storage	to	provide	faster	client	
access	to	the	entire	cache	space	than	the	Distributed	model;	however	the	
cache	size	is	limited	to	the	memory	(without	a	backing	store)	and	disk	
space	(with	a	backing	store)	on	each	node.

o Distributed – A	multi-node	cache	where	the	cache	is	partitioned	across	
nodes	such	that	each	node	contains	a	subset	of	the	key	space	(see	Figure	
18).	This	approach	increases	network	traffic	and	access	latency	over	the	
Replicated	model;	however	it	provides	horizontal	scalability	of	the	cache	
size	(memory	&	disk)	through	the	addition	of	nodes	to	the	cache.

Both	synchronous	and	asynchronous	write	propagation	models	are	available	
depending	on	the	availability	and	consistency	requirements	of	the	application.

Infinispan	integrates	with	numerous	storage	solutions,	including	the	following:

 Relational	databases	via	Java	Database	Connectivity	(JDBC)	&	Java	
Persistence	API	(JPA)-compliant	Object	Relational	Mapping	(ORM)	
solutions

 NoSQL	data	stores,	including	Apache	Cassandra,	Apache	HBase,	
MongoDB,	LevelDB	&	BerlkeyDB	

 Remote	Infinispan	backing	stores	via	the	HotRod	protocol	(e.g.	for	
distributed	caching	to	a	single	data	store)

DECEMBER 2014

Page 27 of 60

 Cloud-based	storage	services	such	as	Amazon’s	S3	&	Rackspace’s	
CloudFiles,	using	JCloud

When	deployed	using	the	Distributed	model,	Infinispan	supports	multi-language	
applications.	This	support	is	implemented	as	a	set	of	language-specific	clients	
that	communicate	via	either	the	custom	Infinispan	protocol	called	HotRod,	or	the	
Memcached	wire	protocol.	Clients	are	available	in	C++,	Java,	Python,	Ruby	&	C#.	
In	order	to	provide	cross-language	support,	clients	are	responsible	for	
serialization	of	data	using	a	cross-language	format	(e.g.	Protocol	Buffers,	Apache	
Thrift,	Apache	Avro,	JSON,	etc.).

Infinispan	provides	two	search	mechanisms.	A	custom	SQL-like,	object-based	
query	language	is	available	for	both	the	embedded	Java	client,	as	well	as	remote	
clients	(Java	and	other	languages).	A	second	query	interface	based	on	Hibernate	
Search]	and	Apache	Lucene	is	available	for	the	embedded	Java	client	only.	Both	
mechanisms	include	configurable	indexing	to	optimize	query	performance.

Infinispan	provides	a	number	of	additional	features,	including:

 Eviction	(LRU,	LIRS)	&	Expiration	policies	to	manage	cache	memory

 Optional	transaction	support	compliant	with	the	Java	Transaction	API	
(JTA)	and	XA	standards.

 Concurrency	support	using	Multiversion	concurrency	control (MVCC)

 Cache	Listeners	supporting	application	processing	based	on	cache	events	
(insertions,	updates,	deletions)

 Authentication	using	Java	Authentication	&	Authorization	Service	(JAAS)	
and	encryption	via	SSL

 Distributed	execution	service	for	cache	processing	tasks

 Cache	management	&	monitoring	support	via	Java	Management	
Extensions	(JMX)

 Command-line	Interface

 Integration	with	Java	Enterprise	Edition	Application	Servers	(e.g.	JBOSS	
Wildfly)

DECEMBER 2014

Page 28 of 60

3.2.4.2.5. Redis

The	Remote	Dictionary	Store	(Redis)	is	an	open	source,	distributed	key-value	
cache	with	optional	persistence	to	a	backing	store.	[21] Redis	was	original	
developed	by	VMWare,	and	has	been under	active	development	since	the	early	
2000s.	It	is	currently	released	under	the	BSD	license	by	Pivotal	Software,	which	
provides	commercial	support.	Redis	has	seen	widespread	adoption;	it	was	
recently	ranked	as	the	most	popular	key-value	store	by	DB-Engines. [22] It	is	
available	as	a	service	in	a	number	of	cloud	environments,	including	Amazon	Web	
Services	S3,	Rackspace	CloudFiles	&	Heroku.	

Redis	employs	a	cache	distribution	model	based	on	clustered	partition	servers	
with	redundant	master/slave	replication	for	fault	tolerance	as	depicted	in	Figure	
17.	The	Cache	is	sharded (partitioned)	across	the	servers,	and	each	shard	is	
replicated	to	one	or	more	backup	servers.

Redis	supports	two	methods	for	storage	of	cache	elements.	The	primary	data	
storage	method	records	every	command	issued	to	the	cache	cluster	using	a	set	of	
Append-Only	Files	(AOF).	Upon	restart,	the	log	of	commands	is	replayed,	
recreating	the	Redis	Cache.	Alternately,	snapshots	of	the	cache	partitions	can	be	
written	to	disk	based	on	pre-configured	conditions	(e.g.	elapsed	time,	
accumulated	cache	changes).

Redis	supports	clients	implemented	in	numerous	development	languages,	
including	C,	C++,	Java,	Perl,	Python,	Ruby,	C#,	Closure,	Scala	among	others.	In	
order	to	provide	cross-language	support,	clients	are	responsible	for	serialization	
of	data	using	a	cross-language	format	(e.g.	Protocol	Buffers,	Apache	Thrift,	
Apache	Avro,	JSON,	etc.).

Redis	includes	a	number	of	additional	features,	including	the	following:

 Optional	transaction	&	concurrency	support

 Cache	Listeners	supporting	application	processing	based	on	cache	events	
(insertions,	updates,	deletions)

 Eviction	(LRU,	LIRS)	&	Expiration	policies	to	manage	cache	memory

 Message	queues	&	publish/subscribe	topics	supporting	communication	
across	members	of	the	distributed	cache.

Limitations	of	Redis	include	the	following:

DECEMBER 2014

Page 29 of 60

 Redis	does	not	provide	authentication,	encryption	or	other	security	
features.	It	is	intended	to	be	deployed	on	a	trusted	network	with	an	
externally-provided	security	model.

 Redis	does	not	provide	facilities	for	ad-hoc	querying	of	cache	entries	as	
other	solutions	do.	Client	applications	must	construct	indexes	for	search	
applications	beyond	simple	key-based	retrieval.

3.2.4.2.6. HazelCast

Hazelcast	is	a	distributed,	in-memory	&	persistent	key-values	tore	for	the	Java	
platform.	[23] It	has	been	under	active	development	since	2008,	and	is	currently	
maintained	by the	company	of	the	same	name.	Hazelcast	is	available	as	an	open-
source	project	released	under	the	Apache	License	2.0.	A	commercial	version	is	
available	as	well.	Commercial	support	for	the	open	source	version	of	Hazelcast	is	
available.	The	commercial	version	is	known	as	Hazelcast	Enterprise,	and	adds	a	
number	of	significant	features,	including:

 Clients	for	C++	and	C#	applications

 Encryption,	authentication,	and	other	security	features

 Off-Heap	cache	storage	using	Java	NIO	to	minimize	Java	garbage	
collection overhead	

 Event-driven	continuous	queries,	supporting	Complex	Event	Processor	
(CEP)	applications

Hazelcast	uses	a	horizontally	scalable	distributed	cache	architecture	based	on	
partitioning	as	depicted	in	Figure	17.	In	addition	to	the	primary	cache	data,	
backup	copies	can	be	partitioned	across	the	server	cluster	providing	a	degree	of	
fault	tolerance.	Hazelcast	provides	numerous	additional	features,	including:

 Support	for	addition	cache	data	structures,	including	lists,	sets	&	multi-
map

 Message	queues	&	publish/subscribe	topics	supporting	communication	
across	members	of	the	distributed	cache.

 Eviction	based	on	LRU	and	LFU	(Least-Frequently	Used)

 Write-through	and	write-behind	API	for	integration	with	data	storage	
solutions

DECEMBER 2014

Page 30 of 60

 Pluggable	serializers	for	performance	optimization	(beyond	built-in	Java	
serialization)	and	(and	cross-language	support)

 Support	for	cache	queries	using	an	SQL-like	language,	as	well	as	indexing	
for	query	optimization

 Optional	transaction	support	(using	the	Entry	Processor	API)

 Cache	Listeners	supporting	application	processing	based	on	cache	events	
(insertions,	updates,	deletions)

The	primary	limitation	of	Hazelcast	as	an	open-source	product	is	that	security	
features	and	cross-language	support	are	available	in	the	commercial	enterprise	
edition.

3.2.5. Summary

The	surveyed	solutions	generally	provide	a	highly	similar	set	of	capabilities	–
distributed,	partitioned	data	caching	with	support	for	queries,	transactions,	
security,	data	expiration,	clients	in	multiple	languages,	and	integration	with	
underlying	storage	solution.	Commercial	support	is	available	for	all	of	the	
solutions	surveyed.	Many	of	the	solutions	(Redis,	Memcached,	JCS	&	Infinispan)	
offer	their	full	feature	sets	in	a	free,	open-source	version.	Others	such	as	EhCache	
and	Hazelcast	provide	only	a	limited	subset	in	their	free,	open-source	versions.	
JCS	does	not	support	partitioning	for	horizontal	scalability.	Memcached	utilizes	a	
client/server	model	and	does	not	include	an	in-client	near	cache	for	optimized	
access	to	commonly	needed	data.

Among	the	truly	open-source	options,	Redis	appears	to	provide	the	most	rich	
feature	set.	It	also	appears	to	be	the	most	popular	caching	solution	among	those	
surveyed (see	Figure	12 in	Appendix	D for	the	Google	Trends	graph).

It	is not	yet	clear	whether	data	grids	provide	a	compelling	advantage for	the	
system.	An	analysis	of	predicted	data	load	and	DBMS	scaling	capacity	must	be	
completed	in	order	to	determine	whether	a	caching	solution	or	data	grid	is	
needed.	Pending	that	analysis,	the	prototyping	work	focus	on	a	combination	of	
the	database	(via	DAOs)	and	messaging	software	to	support	data	distribution	in	
E3. Should	the	need	arise	to	incorporate	caching	the	executable	architecture	
prototype	the	team	will	start	with	Redis	as	the	most	promising	candidate.

DECEMBER 2014

Page 31 of 60

4. PROCESSING CONTROL PROTOTYPING

4.1. E1 Background

The	E2	OSD	prototyping	effort	represents	a	progression	of	the	activities	
completed	in	E1.	A	brief	summary	of	the	E1	OSD	work	is	provided	below	for	
context.

E1	processing	control	work focused on	evaluation	of	COTS application	
frameworks supporting	development	&	deployment	of	a	distributed	processing	
architecture.	The	survey	covered	a	diverse set	of	technologies,	including	Java	EE	
application	servers,	the	Spring	core	framework,	stream	processors,	complex	
event	processors	and	enterprise	service	bus	(ESB)	solutions.	Based	on	the	
results	of	the	survey,	follow-on	exploratory	prototypes	were	developed	for	the	
Wildfly	Java	EE	application	server	and	the	Storm	stream	processor.

The	application	frameworks	evaluated	in	E1	were	found	to	be	problematic	for	
various	reasons. See	[24] for	specific	findings. In	response,	the	team	shifted	its	
focus	in	E2	to	simpler	frameworks	and	lower-level technologies	that	could be	
used	to	develop	a	more	tailored	custom	processing	control	solution.

4.2. E2 Prototyping

The	following	activities	were	completed	in	E2:

1. Survey	of	messaging	technologies	supporting	OSD	data	distribution,	as	well	
as	processing	control	software	infrastructure

2. Initial	research	into	Java	batch	processing	frameworks

The	following	sections	describe	each	of	these	activities	in	further	detail

4.2.1. Messaging Software

Messaging	support	for	the	processing	control	infrastructure	was	investigated	as	
part	of	a	joint	effort	addressing	both	processing	control	and	OSD	data	
distribution.	See	Section	3.2.3 for	results	of	the	E2	of	the	messaging	software	
survey.

4.2.2. Batch Processing Frameworks

The	E1	survey	of	application	frameworks	did	not	identify	a	particularly	
compelling	candidate	to	support	processing	control	functions.	In	E2,	the	team	
began	to	investigate	alternative	technologies,	specifically	batch	processing	
frameworks.

DECEMBER 2014

Page 32 of 60

Batch	processing	here	refers	to	the	execution	of	a	series	of	bulk	data-oriented	
application	tasks	(“jobs”)	that	can	be	executed	to	completion	without	human	
interaction. [25] It	does	not	imply	that	processing is	executed	according	to	a	
schedule	(although	this	is one	possible	approach);	nor	does	it	imply	that	
processing	cannot	include	complex	structures	supporting	parallel	processing,	
conditional	logic,	task	decomposition,	etc.	Under	this	broad	definition,	both	the	
automated	processing	and	interactive	Analyst	support	functions	can	be	thought	
of	as	batch	processing	jobs.

Two	prominent	Java	frameworks	have	emerged	in	recent	years	to	support	batch	
processing:	Spring	Batch	and	the	Java	EE	Batch	(JSR	352). Spring	Batch	was	first	
released	in	2007,	and	has	seen	a	steady	increase	in	interest	since (as	indicated	
by	Google	Trends).	In	2013,	JSR	352	was	released,	specifying	batch	processing	
support	for	Java	EE	application	servers.	 The	framework	spelled	out	in	JSR	352	is	
strikingly	similar	to	the	Spring	Batch	framework,	and	highlights	the	fact	that	
Spring	Batch	has	served	as	the	de	facto	standard. JSR	352	is	now	supported	by	
most	Java	EE	application	servers,	including	Widlfly,	Glassfish,	Websphere	and	
WebLogic.

Both	frameworks	provide	essentially	the	same	basic	components	and	patterns	
for	composing	batch processing	applications.	Figure	5 illustrates	a	sample	batch	
processing	application. As	shown	in	the	figure,	data	processing	is	organized	into	
jobs,	which	consist	of	steps	arranged	in	sequences,	parallel	processing	paths	and	
conditional	flows.	The	structure	of	a	job	is	defined	using	a	declarative	
specification,	either	using	XML	or	in-code	annotations.	The	Job	Launcher	
orchestrates	execution	of	the	jobs	at	runtime.	Information	about	jobs	is	stored	in	
the	job	repository.

DECEMBER 2014

Page 33 of 60

Figure 5. Example Batch Processing Application

A	Job	Launcher	(Job	Operator	in	JSR	352)	manages	the	execution	of	jobs	in	the	
application,	configuring,	starting,	stopping,	retrying,	etc.	jobs	based	on	rules	
defined	in	the	Job	specification	(XML	or	annotations). Information	about	current	
and	past	jobs is	stored	in	a	job	repository.	Jobs	consist	of	steps,	which	can	be	
arranged	in	sequences,	in	parallel,	and	based	on	conditional	logic	as	defined	in	the	
Job	Specification.

Both	frameworks	provide	the	following:

 Job	definition	language

 Runtime	environment	for	execution	of	batch	jobs

 APIs	to	define	jobs,	steps,	conditional	logic,	etc.

 Transaction	support

 Error	handling	and	recovery	(e.g.	job	retry)

 Management	of	state	information	for	jobs	and	steps

A	significant	feature	distinguishing	Spring	Batch	from	JSR	352	is	that	Spring	
Batch	supports	federation	of	job	execution	across	multiple	processes,	with	
message-based	IPC	supporting	the	coordination	of	individual	steps.	In	contrast,	

Job Repository

Job
Launcher

Job

Step

Step

Step

Step

Step

Step

Step

DECEMBER 2014

Page 34 of 60

JSR	352	supports	only	multi-threaded	job	execution	within	a	single	JVM.	Support	
for	multi-process	job	execution	makes	Spring	Batch	particularly	attractive.

Overall,	Spring Batch	appears to	align	best	with	the	system processing	control	
infrastructure	requirements	defined	in	Section	2.2. However,	the	initial	
investigation	completed	in	E2	is	incomplete	and	requires	follow	on	work	to	
further	assess its suitability	for the	system.	Example	questions	that	must	be	
addressed	include:

 What	(if	any)	support	is	available	for	steps	implemented	in	languages	
other	than	Java	(e.g.	C++)?

 What	performance	implications	do	these	frameworks	have	for	the	
applications	they	support?

5. PATH FORWARD

Starting	in	E3,	the	team	will	begin	design	and	development	work	directly	
addressing	the	executable	architecture	deliverable.	Moving	forward,	the	
prototyping	team	will	expand	to	support	both	the	executable	architecture	
development	effort,	as	well	as follow exploratory	prototyping	in	support	of	
architecture	definition.	An	initial	plan	and	schedule for	development	of	the	
executable	architecture	is	documented	in	[26].	Specific	E3	activities	that	will	be	
addressed	as	part	of,	or	in	addition	to,	the	work	documented	in	this	plan	include	
the	following.

5.1. OSD

 Performance	assessment	of	the	Hibernate	ORM	based	on	worst-case	
scenarios.

 Selection	of	cross-language	serialization	COTS	supporting	direct	data	
distribution	between	processing	components	implemented	in	different	
languages	(nominally	Java	and	C/C++).9

																																																												
9 In	E2,	the	prototyping	team	completed	a	preliminary	investigation	of	cross-language	serialization	COTS,	
including	Google	protocol	buffers,	Apache	Thrift,	Apache	Avro,	Splice	and	JSON.	Google	protocol	buffers	and	
Apache	Thrift	were	identified	as	the	most	promising	solutions,	based	on	serialization	performance,	popularity	
and	maturity.	However	a	decision	was	not	reached	as	to	which	of	the	two	should	be	used	in	development	of	
the	executable	architecture	prototype	moving	forward.

DECEMBER 2014

Page 35 of 60

5.2. Processing Control

 Follow-on	investigation	and	prototyping	of	batch	processing	frameworks	
supporting	the	processing	control	infrastructure

DECEMBER 2014

Page 36 of 60

6. WORKS CITED

[1]	 Sandia	National	Laboratories,	"US	NDC	Modernization	Iteration	E2	Prototyping	Report:	User	

Interface	Framework,"	2014.

[2]	 "JPype	0.4	- User	Guide,"	[Online].	Available:	http://jpype.sourceforge.net/doc/user-

guide/userguide.html.	[Accessed	31	August	2014].

[3]	 "ActiveMQ	Support,"	Apache	Software	Foundation,	[Online].	Available:	

http://activemq.apache.org/support.html.	[Accessed	20	August	2014].

[4]	 "ActiveMQ,"	Apache	Software	Foundation,	18	July	2014.	[Online].	Available:	

http://activemq.apache.org/.	[Accessed	19	July	2014].

[5]	 "Apollo,	ActiveMQ's	Next	Generation	of	Messaging,"	Apache	Software	Foundation,	[Online].	

Available:	http://activemq.apache.org/apollo/index.html.	[Accessed	19	July	2014].

[6]	 H.	Chirino,	"Stomp	Server	Performance	Comparisons,"	FuseSource,	[Online].	Available:	

http://hiramchirino.com/stomp-benchmark/ec2-c1.xlarge/index.html.	[Accessed	19	July	

2014].

[7]	 "øMQ	- The	Guide,"	iMatix	Corporation,	[Online].	Available:	http://zguide.zeromq.org/page:all.	

[Accessed	31	August	2014].

[8]	 "Real-Time	Innovations,	Inc.	Open	Infrastructure	Community	License,"	Real-Time	Innovations,	

[Online].	Available:	https://www.rti.com/downloads/IC-license.html.	[Accessed	14	August	

2014].

[9]	 "Leadership	Through	Connext	DDS,"	Real-Time	Innovations,	Inc.,	[Online].	Available:	

http://www.rti.com/products/dds/dds_leader.html.	[Accessed	14	August	2014].

[10]	"Solving	Customer	Problems,"	Real-Time	Innovations,	Inc.,	[Online].	Available:	

http://www.rti.com/industries/index.html.	[Accessed	14	August	2014].

[11]	M.	Salvan,	"A	quick	message	queue	benchmark:	ActiveMQ,	RabbitMQ,	HornetQ,	QPID,	Apollo…,"	

Muriel's	Tech	Blog,	10	April	2013.	[Online].	Available:	http://blog.x-aeon.com/2013/04/10/a-

quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/.	[Accessed	15	July	

2014].

[12]	"RabbitMQ	Performance	Measurements,	part	2,"	Pivotal	Software,	Inc.,	[Online].	Available:	

DECEMBER 2014

Page 37 of 60

http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-

2/.	[Accessed	6	August	2014].

[13]	"ZeroMQ	Performance	Tests,"	iMatix	Corporation,	13	April	2011.	[Online].	Available:	

http://zeromq.org/area:results.	[Accessed	5	August	2014].

[14]	"Apache	QPid	Performance,"	Apache	Software	Foundation,	[Online].	Available:	

http://qpid.apache.org/releases/qpid-0.20/java-broker/book/Java-Broker-High-Availability-

Performance.html.	[Accessed	5	August	2014].

[15]	"Java	Caching	System,"	Apache	Software	Foundation,	25	March	2014.	[Online].	Available:	

http://commons.apache.org/proper/commons-jcs.	[Accessed	8	August	2014].

[16]	"memcached	Wiki,"	22	August	2011.	[Online].	Available:	

https://code.google.com/p/memcached/wiki/NewOverview.	[Accessed	8	August	2014].

[17]	"Memcached,"	Wikiepdia,	14	July	2014.	[Online].	Available:	

http://en.wikipedia.org/wiki/Memcached.	[Accessed	8	August	2014].

[18]	D.	Wind,	Instant	Effective	Caching	with	EhCache,	Birmingham,	UK:	Packt	Publishing,	2013.	

[19]	M.	M.	G.	Z.	P.	M.	Manik	Surtani,	"Infinispan	User	Guide,"	Red	Hat,	Inc.,	11	August	2014.	[Online].	

Available:	http://infinispan.org/docs/6.0.x/user_guide/user_guide.html.	[Accessed	12	August	

2014].

[20]	F.	&.	S.	M.	Marchioni,	Infinispan	Data	Grid	Platform,	Birmingham,	UK:	Packt	Publishing,	2012.	

[21]	"Redis	Documentation,"	Pivotal,	[Online].	Available:	http://redis.io/documentation.	[Accessed	

5	August	2014].

[22]	"DB-Engines	Rankin	gof	Key	Value	Stores,"	Solid	IT,	August	2014.	[Online].	Available:	

http://db-engines.com/en/ranking/key-value+store.	[Accessed	14	August	2014].

[23]	M.	Johns,	Getting	Started	with	Hazelcast,	Birmingham,	UK:	Packt	Publishing,	2013.	

[24]	Sandia	National	Laboratories,	"US	NDC	Modernization	Iteration	E1	Prototyping	Report:	

Processing	Control	Framework,"	2014.

[25]	"Batch	Processing,"	Wikipedia,	15	September	2014.	[Online].	Available:	

http://en.wikipedia.org/wiki/Batch_processing.	[Accessed	21	September	2014].

[26]	Sandia	National	Laboratories,	"US	NDC	Modernization	Iteration	E2	Prototyping	Report:	

DECEMBER 2014

Page 38 of 60

Executable	Architecture	Planning".

[27]	"OASIS	Advanced	Meesage	Queueing	Protocol	(AMQP)	Version	1.0,"	29	October	2012.	[Online].	

Available:	http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.	

[Accessed	3	July	2014].

[28]	"Advanced	Message	Queueing	Protocol,"	Wikipedia,	24	June	2014.	[Online].	Available:	

http://en.wikipedia.org/wiki/AMQP.	[Accessed	5	July	2014].

[29]	"STOMP	Protocol	Specification,	Version	1.2,"	22	October	2012.	[Online].	Available:	

http://stomp.github.io/.	[Accessed	5	July	2014].

[30]	v.	Team,	"Choosing	Your	Messaging	Protocol:	AMQP,	MQTT,	or	STOMP,"	VMWare	BLOGS,	19	

February	2013.	[Online].	Available:	http://blogs.vmware.com/vfabric/2013/02/choosing-

your-messaging-protocol-amqp-mqtt-or-stomp.html.	[Accessed	5	July	2014].

[31]	"Data	Distribution	Service	for	Real-time	Systems	Version	1.2,"	Object	Management	Group,	

2007.

[32]	"Data	Distribution	Service,"	Wikipedia,	13	July	2014.	[Online].	Available:	

http://en.wikipedia.org/wiki/Data_Distribution_Service.	[Accessed	16	July	2014].

[33]	G.	Pardo-Castellote,	"RTI	DDS:	A	Next-Generation	Approach	to	Building	Distributed	Real-Time	

Systems,"	Real-Time	Innovations,	25	February	2011.	[Online].	Available:	

http://www.slideshare.net/GerardoPardo/rti-datadistribution-service-dds-master-class-

2011.	[Accessed	14	August	2014].

[34]	"JSR	107:	JCache	- Java	Temporary	Caching	API,"	Oracle	Corporation,	[Online].	Available:	

https://jcp.org/en/jsr/detail?id=107.	[Accessed	20	June	2015].

[35]	"JSR	347:	Data	Grids	for	the	Java	Platform,"	Oracle	Corporation,	[Online].	Available:	

https://jcp.org/en/jsr/detail?id=347.	[Accessed	20	June	2014].

[36]	Sandia	National	Laboratories,	"US	NDC	Modernization	Iteration	E1	Prototyping	Report:	

Processing	Control	Framework,"	2014.

DECEMBER 2014

Page 39 of 60

APPENDIX A. OSD OVERVIEW

As	the	architecture	definition	effort	expanded	in	E2,	the	project	team	developed	
preliminary	definitions	for	a	number	of	key	mechanisms,	including	the	OSD.	
Figure 6 illustrates the	OSD	as	defined	in	E2,	highlighting	prototyping	areas	of	
focus.	As	depicted	in	the	figure,	the	OSD	is	a	software	mechanism consisting	of	
two	primary	elements:	Stored	Data	Access	&	Data	Distribution.

Figure 6. Object Storage & Distribution Mechanism as of E2

Object	Storage	&	Distribution	(OSD)	Mechanism

Data	Access

Object	Storage	&	Distribution	(OSD)	Mechanism

Data	Access

DAOs

Entity	Classes

Data Store

Data	Distribution

E.g.	ORM	COTS

Caching	(TBD)

Pub/Sub Notification

E2	Focus

DAOs

Entity	Classes

Data Store

Data	Distribution

E.g.	ORM	COTS

Caching	(TBD)

Pub/Sub Notification

E2	FocusE2	Focus

Implements	

the	COI

Object	Storage	&	Distribution	(OSD)	Mechanism

Stored	Data	Access

DAOs

Entity	Classes

Data Store

Data	Distribution

ORM	(e.g.	COTS)

Caching	(TBD)

Pub/Sub Notification

Scripting	Access	

(e.g.	Python)

DECEMBER 2014

Page 40 of 60

A.1. OSD Stored Data Access

Stored	Data	Access provides	the	system with	an	object-based	CRUD10 interface	
to	data	stored	in	the	underlying	database	management	system	(DBMS).	Access	is	
provided	via	a	set	of	entity	classes	encapsulating	system data,	and	a	set	of	Data	
Access	Objects	(DAOs)	providing	APIs	for	entity-based	access	to	the	database.	
The	DAOs	provide	an	implementation	of	the	Common	Object	Interface (COI),	
which	specifies	a	language-agnostic	and	DBMS-agnostic	set	of	interfaces	for	
access	to	system data.

DAOs	are	built	using	Object-Relational	Mappings	(ORMs),	which	translate	
between	entities	in the	application	and	relational	tables	in	the	underlying	
database.

A.2. OSD Data Distribution

Data	Distribution provides	access	to	application	data	across	processes,	including	
both	persistent	data	stored	in	the	database	as	well	as	transient	data	maintained	
in	memory.	Distribution	is	provided	through	publish/subscribe	middleware	and	
standard	data	serialization	technologies.		In	order	to	support	the	full	set	of	use	
cases,	multiple	data	distribution	design	patterns	will	likely	be	needed.	Examples	
include	direct	transmission	of	application	data	between	processes	via	
messaging,	and	indirect	distribution	of	data	via	the	database	or	distributed	cache

																																																												
10 Create,	Read,	Update	&	Delete

DECEMBER 2014

Page 41 of 60

APPENDIX B. MESSAGING SOLUTION SPACE SUMMARY

Table	1.	Summary	Comparison	of	Surveyed	Messaging	Solutions

Name Standards
Language
Support

Advantages Disadvantages

RTI DDS

DDS
JMS
REST
SOAP

C, C++
C#
Java
Ada

 Standards-Based

 Cross-Language Support

 Designed for low-latency, high-throughput with
configurable QoS

 Flexible communication patterns & configurable transports

 Open-source version available with commercial support
from RTI

 Generally considered to be higher performance than
brokered solutions

 Open-source license is more restrictive than for other solutions

 Many features are only available in the commercial edition
 Appears to be less popular than other solutions (based on

Google Trends)

 Configurable QoS introduces complexity relative to other
solutions

 Past prototyping efforts have struggled with product
complexity

Qpid
AMQP
JMS

Java
C, C++
C#
Ruby
Perl
Python
PHP

 Standards-Based
 Cross-Language Support

 Free OSS with community support

 Appears to be less popular than other solutions (based on
Google Trends)

ActiveMQ
/ Apollo

AMQP
STOMP
REST
XMPP
JMS 1.1

Java
C, C++
C#
Ruby
Perl
Python
PHP

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Mature & highly stable (widely used since early 2000s)
 Highly popular

 Performance limitations at scale (Apollo subproject attempts
to address these, but is not yet a full-featured product)

 Interest in ActiveMQ appears to be declining in recent years
(based on Google trends)

DECEMBER 2014

Page 42 of 60

RabbitMQ
AMQP
STOMP

Java
C++
.NET
Ruby
Perl
Python
PHP

 Standards-Based
 Cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Highly popular (highest search term frequency on Google
Trends)

 Favorable performance on a number of benchmarks

 Broker is implemented in Erlang, which is a relatively obscure
development language

ZeroMQ None

Java
C, C++
C#
Ruby
Perl
Python
PHP

 Cross-Language Support

 Free OSS with community support
 Generally considered to be higher performance than

brokered solutions

 Not standards-based

 Appears to be less popular than other solutions (based on
Google Trends)

DECEMBER 2014

Page 43 of 60

Figure 7. Google Trends Interest over Time for Surveyed Solutions

APPENDIX C. MESSAGING OVERVIEW

The	following	sections	provide	an	overview	of	the	concepts,	standards	and	use	
cases	related	to	messaging	software.

C.1. Concepts

C.1.1. Message Oriented Middleware

Message-oriented	middleware	(MOM)	is	a	subset	of	messaging	technology	that	is	
designed	to	provide	loosely-coupled,	asynchronous,	resilient	communication	
between	heterogeneous	components	across	platforms	and	development	
languages.	Most	of	the	messaging	solutions	included	in	the	survey can	be	
categorized	as	message-oriented	middleware.

C.1.2. Loose Coupling

MOM	solutions	provide	loose	coupling	between	communicating	components	
insofar	as	the	sender	and	receiver	are	not	directly	aware	of	one	another	and	

DECEMBER 2014

Page 44 of 60

communicate	asynchronously.	Rather	than	explicitly	addressing	messages	to	one	
or	more	receivers,	the	sender	addresses	messages	to	a	destination managed	by	
the	messaging	provider.	The	destination	may,	for	example,	represent	a	message	
queue,	or	a	topic	exchange	in	the	case of	the	publish/subscribe	messaging.	
Communication	is	asynchronous	in	that	the	sender	and	receiver	need	not	be	
active	or	even	exist	at	the	same	time.	The	messaging	provider	stores	messages	
from	the	sender	until	the	recipient	retrieves	them.	Messaging	providers	typically	
implement	this	capability	using	message	queues.

C.1.3. Resilience

MOM	solutions	are	typically	designed	to	provide	resilience	in	the	face	of	network	
failures	as	well	as	client	and	provider	failures	(software,	hardware).	Most	
designs	employ	redundant providers	with	replicated	message	stores	(e.g.	
queues)	and	message	acknowledgment	strategies	to	provide	resilience	through	
retransmission	of	messages	under	failure	conditions.	Resilience	is	often	
expressed	in	terms	of	message	delivery	guarantees.

 At-most-once	message delivery guarantees	that	each	message	will	be	
delivered	once	or	not	at	all.	This	guarantee	is	characteristic	of	unreliable	
messaging	systems	where	messages	may	be	lost.

 At-least-once message	delivery	guarantees	that	each	message	will	be
delivered	at	least	once,	and	may	be	delivered	multiple	times.	This	
guarantee	is	characteristic	of	reliable	messaging	systems,	typically	based	
on	message	acknowledgement	and	retransmission	under	failure	
conditions11.

 Exactly-once message	delivery	guarantees that	each	message	will	be	
delivered	once	and	only	once.	This	is	typical	of	reliable	messaging	
systems	that	build	on	the	retransmission	model	used	for	at-least-once
guarantees,	adding	message	deduplication	at	the	receiving	end.

Most	of	the	solutions	surveyed	provide	at-least-once	delivery	guarantees	and	
leave	it	to	the	client	application	to	implement	exactly-once	guarantees,	either	
through	idempotent	message	handling,	or	message	deduplication.

																																																												
11 Acknowledgment	in	this	context	indicates	both	that	the	message	has	been	received	and	has	been	acted	
upon	by	the	client.	This	is	in	addition	to	network	layer	retransmission,	for	example	using	TCP,	where	
retransmission	is	used	to	ensure	receipt	of	all	packets.

DECEMBER 2014

Page 45 of 60

Figure 8. Messaging Resilience Approaches

The	broker	maintains	a	persistent	cache	(e.g.	message	queue)	to	support	
retransmission	of	messages	under	failure	conditions.	Brokers	may	be	clustered	to	
address	broker	failures.	Receivers	acknowledge	receipt	and	processing	of	messages	
to	the	broker.	Only	when	the	acknowledgement	is	received	will	the	broker	remove	
messages	from	the	cache.	If	the	acknowledgement	message	from	the	receiver	to	the	
broker	is	lost	due	to	a	network	failure,	the	broker	will	continue	to	retransmit	the	
message.	In	this	case,	the	receiver	must	discard	subsequent	message	copies	to	
achieve	exactly-once	processing	guarantees.

C.1.4. Messaging Patterns

MOM	solutions	support	a	wide	variety	of	messaging	patterns,	including	for	
example	point-to-point,	publish/subscribe,	&	request/response.	Both	
synchronous	and	asynchronous	messaging	are	typically	supported.	In	the	case	of	
synchronous	messaging,	the	sender	will	block	until	the	broker	confirms	receipt	
of	the	message	by	the	receiver.

 Point-to-Point

This	basic	pattern	is	typically	implemented	using	message	queues.	As	
depicted	in Figure	9,	senders	address	each	message	to	a	specific	message	
queue	that	is	associated	with	one	or	more	receivers.	Once	the	message	is	
retrieved	from	the	queue	and	acknowledged	by	a	receiver,	it	is	removed	
from	the	queue;	thus	only	one	receiver	will	process	each	message.	This	
pattern	is	often	used	to	implement	task	queues,	where	workers	retrieve	
task	messages	from	the	queue.

Broker

Broker

Sender
Receiver

send

retrieve

acknowledge

confirm

deduplicate

clustered brokers

store

DECEMBER 2014

Page 46 of 60

Figure 9. Basic Message Queue Example

One	or	more	senders	address	messages	to	a	message	queue	managed	by	middleware	broker(s).	
One	more	receivers	retrieve	the	messages	from	the	queue,	with	each	message	retrieved	by	only	one	
receiver.

 Publish/Subscribe

In	a	publish/subscribe	application,	senders	publish	messages	to	a	named	
topic	that	serves	as	a	routing	key	for	messages.	As	depicted	in	Figure	10,	
all	receivers	subscribed	to	the	topic	will	receive	copies	of	the	message.	
Some	solutions	provide	durable	subscriptions,	where	new	subscribers	
receive	copies	of	durable	messages	sent	before	the	subscription	was	
created.

Figure 10. Publish/Subscribe Messaging Example

 Request/Response

In	the	request/response	pattern,	the	consumer	sends	a	message	to	a	
dedicated	request	queue.	The	message includes	both	the	request	
information,	as	well	as	the	address	of	a	separate	queue	that	will	be	used	
to	respond	to	the	request.	Upon	receipt	and	processing	of	the	request,	the	
producer	sends	a	response	message	to	the	specified	response	queue.	This	
pattern	is	typically	used	to	implement	remote	procedure	call	(RPC)	like	
interactions	between	processing	components.	See	Figure	11.

Broker

Sender

Receiver

7 6 5 4 3
Receiver

Sender Receiver

2

1

Broker

Sender
Receiver

Receiver
Sender 1

1

Foo Topic

“Foo”, 1

DECEMBER 2014

Page 47 of 60

Figure 11. Request/Response Messaging Example

As	an	extension	of	the	messaging	patterns	described	above,	many	of	the	
solutions	surveyed	include	additional	message	filtering	capabilities,	based	on	
inspection	of	message	content.

C.1.5. Transactions

Many	of	the	surveyed	messaging	solutions	support	transactions	of	some	kind.	
Typically,	messages	transfers	(including	acknowledgements)	can	be	grouped	
into	transactional	sessions	such	that	the	messages	only	become	available	at	the	
target	address	upon	commit,	thus	guaranteeing	all-or-none	delivery.

C.1.6. Security

The	messaging	solutions	surveyed	typically	implement	some	combination	of	the	
following	security	features.	

 Authorization	using	Access	Control	Lists for	message	brokers

 Authentication of	client	connections	to	the	message	brokers	using,	for	
example	LDAP	or	Kerberos

 Encryption	and	certificate	management,	typically	using	SSL

C.1.7. Cross-Language Support

All	of	the	solutions	surveyed	provide	some	level	of	support	for	clients	
implemented	in	multiple	languages.	Support	typically	includes	a	language-
agnostic	wire	protocol	and	separate	client	APIs	implemented	in	a	variety	of	
languages	– typically	at	least	C,	C++,	Java,	Python	&	C#.	For	the	most	part,	these	
solutions	do	not	address	serialization	of	message	data	into	a	cross-language	
compatible	format.	This	task	is	left	to	the	client	application.	

Broker

Consumer Producer

Response Queue

Request Queue

DECEMBER 2014

Page 48 of 60

C.2. Relevant Standards

Several	prominent	messaging	standards	have	evolved	in	recent	years	that	define	
the	communication	patterns,	protocols	&	application	programming	interfaces	
(APIs)	commonly	used	in	distributed	applications.	These	are	discussed	briefly	
below.

C.2.1. AMQP

The	Advanced	Message	Queuing	Protocol	(AMQP)	is	an	open	standard	for	
reliable,	secure,	binary	message-based	communication. [27] It	supports	both	
point-to-point	and	publish/subscribe	communication	patterns	with	multiple	
reliable	messaging	policies,	including	at-most-once,	at-least-once and	exactly-
once12 delivery	guarantees.	AMQP	Assumes	a	reliable	transport	protocol	such	as	
TCP.	At-least-once and	exactly-once guarantees	further	depend	on	message	
durability13 and	transaction	support.

AMQP	defines	message	formats	and	transfer	protocols	that	enable	
interoperability	across	implementations,	platforms	and	development	languages.	
Authentication	and	encryption	support	are	based	on	Transport	Layer	Security	
(TLS)	and	Simple	Authentication	&	Security	Layer	(SASL).

AMQP	messaging	is	asynchronous	in	that	the	sender	and	receiver	need	not	be	
available	at	the	same	time	to	communicate.	It	enables	loose	coupling	of	
application	components	in	that	senders	and	receivers	need	not	know	about	one	
another.

AMQP	has	been	under	development	since	2003.	Initial	development	of	the	
standard	was	led	by	JP	Morgan	Chase,	which	formed	an	open	working	group	that	
grew	to	include	a	number	of	prominent	companies	in	the	banking	and	software	
industries.14 The	current	version	of	AMQP	is	1.0,	which	was	released	as	an	ISO	
international	standard	in	April	of	2014. [28]

C.2.2. STOMP

The	Simple/Streaming	Text	Oriented	Message	Protocol	(STOMP)	is	a	lightweight,	
open	standard	for	message-based	communication. [29] A	primary	distinguishing	
feature	of	STOMP	is	that	messages	are	text-based,	rather	than	binary,	making	it	
somewhat	similar	to	HTTP.	Simplicity	and	interoperability	are	core	design	

																																																												
12 At-most-once delivery	guarantees	that	each	message	will	be	delivered	once	or	not	at	all.	At-least-once
delivery	guarantees	that	each	message	will	be	delivered	at	least	once,	and	may	be	delivered	multiple	times.	
Exactly-once delivery	guarantees	that	each	message	will	be	delivered	once	and	only	once.
13Message	durability	enables	retransmission	of	persisted	messages	in	the	case	of	delivery	failures.
14Members	of	the	AMQP	working	group	included	Bank	of	America,	Barclays,	Cisco	Systems,	Credit	Suisse,	
Goldman	Sachs,	JPMorgan	Chase,	Microsoft,	Novell,	VMWare	&	RedHat,	among	others. [28]

DECEMBER 2014

Page 49 of 60

principles	of	the	standard.	Although	STOMP	specifies	a	message	format	and	
transfer	protocol	enabling	interoperability,	it	is	less	explicit	than	AMQP	on	
details	of	the	protocol,	with	the	result	that	broker	implementations	vary	
somewhat	in	practice. [30] Several	of	the	brokers	implementing	the	AMQP	
standards	also	provide	support	for	STOMP	(see	Section	3.2.3.1).

C.2.3. JMS

Java	Message	Service	(JMS)	is	an	API	specification	for	asynchronous,	reliable	
messaging	within	Java	Enterprise	Edition	(Java	EE)	applications.	Unlike	AMQP,	
JMS	does	not	include	message	format	and	transfer	protocol	definitions;	it	
specifies	only	the	messaging	API	available	to	client	Java	EE	applications.	As	such,	
it	does	not	enable	interoperability	across	JMS	implementations.	As	a	Java
standard,	it	is	not	intended	to	enable	interoperability	across	languages.

JMS	supports	queuing	and	publish/subscribe	messaging	patterns	with	multiple	
reliable	messaging	policies,	including	at-most-once,	at-least-once and	exactly-
once delivery	guarantees.

C.2.4. DDS

The	Data	Distribution	Service	for	Real-Time	Systems	(DDS)	is	a	standard	for	
scalable,	reliable,	high-performance	communication. [31] DDS	specifies	a	data-
centric	publish/subscribe	communication	framework,	including	wire	protocol,	
architecture	and	client	APIs.	It	also	specifies	a	data	persistence	framework.

A	significant	feature	of	DDS	is	its	fine-grained,	highly	configurable	control	over	
Quality	of	Service	(QoS)	policies.	These	policies	define	the	behavior	of	data	
exchange	between	sender	and	receiver	related	to	latency,	durability,	reliability,	
sample	rate,	data	partitioning,	transport	priority,	data	lifespan,	and	resource	
utilization	limits,	among	others.

DDS	was	developed	through	a	partnership	between	two	vendors:	Real-Time	
Innovations	(RTI)	and	the	Thales	Group. [32] It	was	first	released	as	an	Object	
Management	Group	(OMG)	standard	in	2003.	The	current	version	is	1.2,	which	
was	released	in	2007.	DDS	has	seen	widespread	adoption	among	DoD	programs	
for	real-time	systems.	Examples	include	the	US	Navy	Open	Architecture	
program,	Space	and	Naval	Warfare	Systems	Command (SPAWAR)	Net-centric	
Enterprise	Solutions	for	Interoperability	(NESI)	program,	and	the	DoD	
Information	Technology	Standards	Registry	(DISR).	[33]

DECEMBER 2014

Page 50 of 60

APPENDIX D. CACHING SOLUTION SPACE SUMMARY

Table	2.	Summary	Comparison	of	Surveyed	Caching	Solutions

Name
Client Language
Support

Advantages Disadvantages

JCS Java
 Cross-Language Support
 Free OSS with community support

 Java only (no cross-language support)

 Appears to be less widely used/popular than other
solutions (e.g. Redis, memcached)

 It is not clear whether commercial support is available

 Limited feature set relative to other solutions surveyed

 Does not support partitioning (only replication)

memcached

C, C++
Java, Python
Ruby
Perl
C#

 Well established and mature
 Widely used highly popular

 Cross-Language Support

 Free OSS with community support

 Commercial support available

 Popularity appears to be declining (based on Google
Trends)

EHCache

Java
C++ &C#
(commercial
version)

 Cross-Language Support

 Free OSS version available

 Commercial support available from Terracotta

 Strong feature set, including partitioning, replication,
transactions, security, etc.

 Many features are only available in the commercial
edition

 Limited cross-language support (and only in the
commercial edition)

 Appears to be less widely used/popular than other
solutions (e.g. Redis, memcached)

 Popularity appears to be declining (based on Google
Trends)

DECEMBER 2014

Page 51 of 60

Infinispan

C++
Java
Python
Ruby
C#

 Cross-Language Support

 Free OSS with community support

 Commercial support available from JBoss

 Strong feature set, including partitioning, replication,
transactions, security, etc.

 Appears to be less widely used/popular than other
solutions (e.g. Redis, memcached)

Redis

C, C++
Java
Perl
Python
Ruby
C#
Closure
Scala

 Widely used highly popular

 Broad cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Strong feature set, including partitioning, replication,
transactions, etc.

 Limited built-in security features

Hazelcast

Java
C++ &C#
(commercial
version)

 Cross-Language Support

 Commercial support available from Hazelcast

 Strong feature set, including partitioning, replication,
transactions, security, etc.

 Many features are only available in the commercial
edition

 Limited cross-language support (and only in the
commercial edition)

 Appears to be less widely used/popular than other
solutions (e.g. Redis, memcached)

DECEMBER 2014

Page 52 of 60

Figure 12. Google Trends Interest over Time for Surveyed Solutions

APPENDIX E. OVERVIEW OF DISTRIBUTED CACHING ARCHITECTURES

E.1. Concepts

E.1.1. Data Cache

In	its	simplest	form,	a	data	caching	solutions	provides	fast	access	to	data	– either	
transient	or	persistent	- by	maintaining	cached	copies	of	frequently	accessed	
data,	typically	in	a	key-value	map	structure.	The	cache	may	be	embedded	in	the	
application	or managed	as	a	separate	service.	Figure	13 illustrates	the	basic	
embedded	caching	model.

DECEMBER 2014

Page 53 of 60

Figure 13. Basic Caching Example

For	cases	where	the	cache	is	integrated	with	an	underlying	storage	solution,	
synchronous	and	asynchronous	persistence	models	are	typically	available,	
trading	write	performance	for	consistency	timeliness	guarantees.

 Write-through	caching	(synchronous) – The	cache	acts	as	a	façade	for	the	
underlying	storage	solution.	Writes	to	the	cache	synchronously	update
the	backing	store.	This	approach	maintains	consistency	between	the	
cache	and	backing	store	at	the	expense	of	write	performance.

 Write-behind	caching	(asynchronous) - The	cache	acts	as	a	façade	for	the	
underlying	storage	solution.	Writes	to	the	cache	and	backing	store	are	
executed	asynchronously.	This	approach	minimizes	application	write	
time	at	the	expense	of	temporary	inconsistency	between	the	cache	and	
backing	store.

The	size	of	the	cache	is	typically	managed	through	a	configurable	set	of	policies,	
including	the	following.

 Eviction

The	cache is	configured	with	a	maximum	number	of	data	items.	When	the	
maximum	is	reached,	elements	are	removed	from	the	cache	using	
algorithms	designed	to	identify	elements	that	are	less	likely	to	be	
accessed	in	the	future.	Examples	include	the	Least	Recently	Used	(LRU)	
algorithm	and	Low	Inter-reference	Recency	Set (LIRS)	algorithm.

 LRU

Node

Application

Cache

Backing Store – e.g.
RDBMS (optional)

Local	Cache

DECEMBER 2014

Page 54 of 60

Cache	items	are	identified	for	expiration	based	on	elapsed	time	since	
the	last	access	request.	The	underlying	assumption	of	LRU	is	that	the	
least	recently	accessed	cache	items	are	least	likely	to	be	accessed	in	
the	future.

 LIRS

The	LIRS	algorithm	identifies	cache	items	for	expiration	based	on	
reuse	distance	– the	count	of	cache	items	accessed	since	the	last	
request	for	the	cache	item	in	question.	LIRS	provides	improved	
performance	over	LRU	for	cases	where	the	cached	data	exhibit	weak	
temporal	access	locality	(i.e.	where	the	LRU	assumption	does	not	
hold).

 Expiration

Cache	entries	are	configured	with	a	fixed	cache	lifespan	(referred	to	as	
Time-to-Live,	or	TTL)	or	maximum	idle	time	(referred	to	as	Time-to-Idle,	
or	TTI).	When	cached	items	reach	the	end	of	their	lifespan	or	maximum	
idle	time,	they	are	removed	from	the	cache.

Caching	solutions	typically	support	both	key-based	search	as	well	as	queries	
based	on	pre-built	indexes	configured	as	part	of	the	cache	deployment.

E.1.2. Distributed Caching

A	distributed	cache	builds	on	the	basic	concepts	described	above,	adding	
support	for	distribution	of	cached	data	across	applications	&	processing	nodes.	
This	type	of	solution	introduces	support	for	distributed	processing	architectures	
and	provides	varying	degrees	horizontal	scalability	not	available	in	the	basic	
caching	solution.	

Figure	14 shows	a	basic	distributed	caching	architecture	where	replicated	copies	
of	the	cache	are	embedded	within	each	application.	Replication	is	used	to	
maintain	consistency	between	the	caches	and	can	be	configured	to	optimize	for	
consistency	or	availability	based	on	the	needs	of	the	application.	Synchronous	
replication	ensures	consistency	across	the	distributed	cache	at	the	expense	of	
availability;	updated	data	will	not	be	available	until	replication	is	complete.	
Asynchronous	replication	allows	access	to	all	data	during	replication	at	the	
expense	of	consistency.	Until	replication	is	complete,	accessed	data	is	not	
guaranteed	to	be	consistent	across	the	distributed	cache.

DECEMBER 2014

Page 55 of 60

Figure 14. Basic Distributed Caching Example

An	alternate	distributed	caching	model	establishes	a	dedicated	cluster	of	caching	
servers.	As	shown	in	Figure	15,	applications	maintain	a	near	cache copy of	
frequently	accessed	cache	data	within	the	local	address	space	that	is	replicated,	
either	synchronously	or	asynchronously	with	a	cluster	of	dedicated	caching	
servers,	each	hosting	a	replicated	copy	of	the	full	cache.	Both	the	local	near	cache	
and	full	cache	instances	are	managed	using	expiration	and	eviction	policies.	

An	advantage	of	this	approach	is	that	it	allows	for	specialization	of	the	hardware	
within	the	architecture;	applications	may	be	run	on	lower	memory	machines	
(e.g.	workstations),	while	the	caching	server	nodes	may	be	tailored	to	maximize	
cache	size	and	responsiveness.	Nonetheless,	cache	size	is	still	limited	to	the	
available	memory	size	of	the	cache	servers,	and	so	does	not	provide	horizontal	
scalability.

A	limitation	of	fully-replicated	caching	models	(Figure	14 &	Figure	15)	is	that	the	
cache	cannot	scale	beyond	the	available	memory	of	any	single	node	because	
each	node	maintains	a	complete	copy.

Application

Cache

Node

Backing Store

Embedded	Distributed	Cache

Application

Cache

Node

R
ep
li
ca
ti
o
n

DECEMBER 2014

Page 56 of 60

Figure 15. Distributed Caching with Replicated Servers

Cache	Server

Full	Cache

Node

Backing Store

Replicated	Caching	Server

Application

Near	Cache

Node

Cache	Server

Full	Cache

Node

Replication

Cache	Cluster

Application

Near	Cache

Node

Application

Near	Cache

Node

Application

Near	Cache

Node

Application

Full	Cache

Node

Backing Store

Lateral	Replicated	Caching

Cache	Cluster

Application

Full	Cache

Node

Application

Full	Cache

Node

DECEMBER 2014

Page 57 of 60

Figure 16. Distributed Caching with Lateral Replication

Horizontal	scalability	is	typically	achieved	using	a	partitioned	caching	model	
where	each	cache	node	hosts	a	subset	of	the	cache	entries,	most	commonly	
based	on	a	hash	of	the	key	set.	Increases	in	cache	size	are	accommodated	by	
adding	nodes	to	the	cache	and	redistributing	the	key	space.	As	with	other	
distributed	caching	architectures,	client	applications	may	maintain	a	near	cache	
copy	of	frequently	accessed	cache	entries.	As	illustrated	in	Figure	17 &	Figure	
18,	partitioned	caches	can	be	implemented	using	either	a	client-server	
architecture	(see	Figure	17),	or	a	lateral	model	where	client	application	nodes	
host	the	cache	partitions	(see	Figure	18).

Figure 17. Scalable Distributed Caching with Partitioned Servers

Slave	NodeSlave	Node

Backing Store

Server	Partitioned	Caching

Application

Near	Cache

Node

Cache	Server

Cache	Partition

Cache	Cluster

Application

Near	Cache

Node

Application

Near	Cache

Node

Application

Near	Cache

Node

3 4

1 32 4

Key	Space

Master	Node

Cache	Server

Cache	Partition

1 2

Master	Node

Backup	

Replica	

(optional)

Backup	

Replica	

(optional)

DECEMBER 2014

Page 58 of 60

Figure 18. Scalable Distributed Caching with Lateral Partitioning

E.2. Relevant Standards

Currently,	there	are	no	established	standards	addressing	NoSQL	data	stores.	
Distributed	data	caching	standards	are	available	for	the	Java	platform.	JSR	107	
defines	a	caching	standard	and	JSR	347	defines	a	data	grid	standard.

E.2.1. JSR 107

JSR	107	is	the	Java	Community	Process	standard	for	temporary	caching	using	the	
Java	platform,	also	known	as	JCache.	JCache	specifies	a	distributed	caching	model	
with	an	API	based	on	the	Java	ConcurrentHashMap.	JCache	also	specifies	
integration	with	the	Context	&	Dependency	Injection	(CDI)	Java	EE	specification.
[34]

E.2.2. JSR 347

JSR	347	specifies	a	Java	Community	Process	standard	for	data	grids	using	the	
Java	platform.	JSR	347	builds	on	the	JCache	specification,	and	addresses	

Backing Store

Lateral	Partitioned	Caching

Cache	Cluster

1 32 4

Key	Space

Cache	Partition

Node

1 2

Application

Cache	Partition

Node

3 4

Application

Cache	Partition

Node

5 6

Application

5 6

DECEMBER 2014

Page 59 of 60

additional	concerns	such	as	cache	persistence,	replication	&	distribution,	
eviction/expiration,	transactions	&	concurrency	control. [35]

E.3. Use Cases

Caching	solutions	are	highly	flexible	and	can	be	applied	to	a	number	of	use	cases.	
Examples	include	the	following:

 Simple	Non-Distributed	Caching – stateful	applications	can	improve	
access	to	state	information	by	maintaining	a	simple	in-process	key-value	
cache.	Caching	solutions	improve	upon	simple	map	data	structures	for	
this	purpose	by	providing:

o Configurable	cache	management	policies,	e.g.	using	expiration	or	
eviction

o Optional	integration	with	data	storage	solutions	(e.g.	as	an	L2	
cache	for	Hibernate	ORM)

 Distributed	Caching – Caching	can	be	used	as	a	form	of	inter-process	
communication	to	distribute	data	across	processing	components	in	a	
distributed	architecture.	Updates	(insertions,	modifications,	deletions)	
are	replicated	across	the	distributed	cache	(including	in-process	near	
cache	copies)	either	synchronously	or	asynchronously,	based	on	
requirements	for	cache	consistency.	Cached	data	can	optionally	be	stored	
in	an	underlying	storage	solution	with	configurable	consistency	and	
availability.

Subscription-based	notifications	can	be	used	to	alert	processing	
components	of	cache	updates	of	interest,	providing	an	event-driven	
processing	model.	Many	caching	solutions	provide	cache	event	listeners	
and	publish/subscribe	messaging	to	support	this	capability.

DECEMBER 2014

Page 60 of 60

This	is	the	last	page	of	the	document.

